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Abstract

In a previous article the authors presented the mathematical formulation of an original and general
hysteretic operator for modelling force-deflection loops, in particular of isolators, the application being
concerned by transient response. In the present article the dynamic behaviour of a dry-friction isolator is
investigated using a steady-state experimental force-deflection loop to determine the parameters of the first
order differential equation of the proposed hysteretic operator. Extracting the classical complex stiffness
from the model and comparing it to measured value permits an initial validation. The harmonic response of
a cantilever beam equipped with a dry-friction isolator is then predicted by coupling the classical second
order equation of the beam in bending with the first order differential equation, giving the restoring force of
the isolator. The experiment described permits validating the use of the proposed hysteretic model in the
case of harmonic steady state behaviour.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The effects of an isolator can be introduced in the equation of motion governing the dynamic
behaviour of structures by using either stiffness models (to be introduced in the left-hand side of
the equations) or restoring force models (to be introduced in the right-hand side). However, from
a general point of view, the dynamic behaviour of isolators is difficult to model using a deductive
approach, because they are currently designed with complicated geometry and various
components such as fluid, elastomer, metal cushions, etc., see Refs. [1–4]. Moreover, their
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dynamic behaviour depends on parameters such as temperature, deflection, forcing frequency,
type of excitation. This leads to non-linear and dissipative behaviours. The inductive approach
consists in extracting parameters from the experimental force-deflection loops. For example, by
using this approach Ko et al. [5], Wong et al. [6], and Ni et al. [7] were involved in the
identification of an isolator having elasto-plastic behaviour and in the harmonic response of a
frame equipped with such an isolator.
Laboratory investigations have concerned the formulation of stiffness models and more

recently an original restoring force model, the parameters being identified by using experi-
mental force-deflection loops. Stiffness models require the definition of complex stiffness (i.e.,
dynamic equivalent stiffness and loss factor) in the case of harmonic response [8], instantaneous
and tangent stiffnesses, and modal damping in the case of transient response due to random [9]
or shock [10] excitations. Consequently, stiffness models are limited, in particular when
different types of excitations are superposed. The restoring force model requires an equation of
envelope curves and various parameters, which until today have only been used to predict
transient responses [11–12]. Therefore, in this article, the restoring force model is used to
predict the steady state harmonic response of a flexible structure equipped with a dry-friction
isolator.
Section 2 briefly presents the proposed hysteresis model and its application to a dry-friction

isolator used for on-board electronic equipment. Then, quasi-static and harmonic models are
formulated on the basis of experiments. Section 4 describes the extraction of the complex stiffness
from the restoring force model formulated and from the experimental loop in order to compare
them and to check the isolator model taken alone. Finally, the predicted and measured harmonic
responses of a beam in bending equipped with the dry-friction isolator provide an experimental
validation of the isolator model coupled with the beam model.

2. Hysteretic restoring force model

In mechanical engineering real isolators have a hysteresis behaviour which can be described
by a force-deflection loop. Several hysteretic models exist in the literature, but they are
limited when the model has to be formulated from the envelope curves of the loop which can be
time and velocity dependant. Coulomb’s model is too rustic. Dalh’s model has straight envelope
lines while the models of Krasnosel’skii and Duhem-Madelung are much too general, see Bliman
[13]. Bouc’s model [14] and Wen’s model [15–16] are difficult to formulate from the envelope
curves.
A general hysteresis model should integrate isolator behaviour with various shapes: softening,

hardening or a combination of both. In Ref. [12] the authors presented the mathematical
formulation of an original and general hysteretic operator for modelling the force-deflection loop
and that of isolators in particular. The idea of the model proposed stems from Dahl’s model,
where the envelope curves are reduced to horizontal straight lines.
Let a relation be between two scalar variables: p-q: The hysteresis appears when a value of

output q cannot be determined by knowledge of only one value of input p: A solution consists in
introducing a local irreversibility of the relation p; q- ’q; and this process is used to index the
information memorised. Now suppose that p and q are linear combinations of R; the restoring
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force and w; the deflection:

p ¼
1

R0
ð�lR þ ð1� lÞkwÞ; ð1Þ

q ¼
1

R0
ðð1� lÞR � lkwÞ; ð2Þ

where R0 is a reference force, k > 0 has the dimension of a stiffness, while l comprised in the
interval [0,1] is a constant defining the general behaviour: l ¼ 0 provides a model with a pure
hardening behaviour while l ¼ 1 provides a model with a pure softening behaviour. Consequently
the hysteretic operator is defined by the following first order equation:

dq

dt
¼ a

dp

dt
ðh–q sgnð ’pÞÞm; ð3Þ

where a is a dissipation energy constant, m; is the rotation constant of the loop, and h is the
equation of the upper and lower envelope curves between which function q is obliged to remain.
The originality of the proposed model in comparison to existing models, lies mostly in the use of

envelop curves, with constants a; m and k having a well defined role. In addition the proposed
model is time and velocity dependant, thereby making the model more general. Measurement of
the force-deflection loops permits the identification of these parameters, in particular the envelope
curves.

3. Isolator modelling

The proposed hysteretic model is applied to an all-metal isolator commonly used in the passive
isolation of on-board electronic equipment; Fig. 1 shows its photograph (a) and its diagram (b). It
works mainly in traction-compression and has a double end-stop. Its aluminium housing is
22.5mm high and has a diameter of 28.5mm. Two conical springs and two cushions made of
metal wires provide the restoring force. Micro-friction between the metal wires of the cushions
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and friction between the cushions and housing cause the dissipative effect. This design permits
obtaining a dissipative hardening–hardening behaviour which is described by a force-deflection
loop bounded by two vertical asymptotic lines.
In what follows, experimental quasi-static and harmonic force-deflection loops are successively

used to define the model parameters. Moreover, the equivalent stiffness and loss factor are
extracted from the simulated and measured loops in order to enhance the validation of the model.

3.1. Quasi-static modelling

The isolator is subjected to five cycles obtained by imposing a deflection of 20mm/min. The
first-four force-deflection cycles are devoted to the warm-up while the last one, shown in Fig. 2(a),
is used for modelling. The vertical asymptotic behaviours at a deflection of +/�6mm are caused
by the double end-stop. It should be observed that high deflection induces high stress in the
cushions and consequently a high dissipative effect within the ranges of deflection closed at the
end-stops, i.e. (�6mm, �4mm) and (4mm, 6mm).
The measured quasi-static loop is used to adjust the parameters of the isolator model. The

hardening effect is obtained with l ¼ 0 which is introduced in relations (1) and (2). Consequently,
Eq. (3) becomes

dR

dt
¼ ak

dw

dt
h �

R

R0
sgn

k ’w

R0

� �� �m

: ð4Þ

Several numerical tests permit evaluating the remaining constants:

ak ¼ 45;500; R0 ¼ 1; m ¼ 1: ð5Þ

The envelope function h is given by

h ¼
ðhu þ hcÞ sgnð ’wÞ þ ðhu � hcÞ

2
; ð6Þ
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Fig. 2. Measured (a) and simulated (b) quasi-static loops.

A. Al Majid, R. Dufour / Journal of Sound and Vibration 277 (2004) 391–403394



with the lower hl and upper hu envelope curves approximated by the least-square method:

hl ¼ �8:63þ 7080:2w � 0:01e�1650 w þ 0:00025e2050w; ð7Þ

hu ¼ 1:12þ 4307:8w � 0:00005e�2550w þ 3:68e470w: ð8Þ

Fig. 2(b) shows that the loop obtained by forcing the deflection in relation (4) is close to the
measured loop shown in Fig. 2(a).

3.2. Harmonic modelling

After warming up, force-deflection loops measured at three forcing frequencies (20, 30 and
50Hz) highlight frequency independence and deflection dependence. Fig. 3(a) presents force-
deflection loops measured at a 20Hz forcing frequency and obtained for several amplitudes of the
deflection. The model keeps the same shape as previously: there is a hardening effect with the
deflection. The behaviour is quasi elastoplastic.
The harmonic model of the isolator is also formulated with Eq. (3) but the parameters are

evaluated as follows:

ak ¼ 87;500; R0 ¼ 1; m ¼ 1: ð9Þ

The envelope function h has expression (6) but its lower and upper envelope curves
approximated by the least squared method are given by

hl ¼ð0:003þ 0:001e�w � 0:001ewÞe2wc � ð31:8� 16:3e�w � 26ewÞe�2wc

� ð3:03þ 4:3e�w þ 1:8ewÞ; ð10Þ

hu ¼ð0:004þ 0:001e�w � 0:001ewÞe2wc þ ð25:2� 19:1e�w � 8:3ewÞe�2wc

þ ð5:5� 4:4e�w þ 1:5ewÞ; ð11Þ
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Fig. 3. Measured (a) and simulated (b) harmonic loops.
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where deflection w is expressed in mm, and wc are the maximum deflections of the experi-
mental loops which are used to update the model’s parameters. Fig. 3(b) shows the force-
deflection loops simulated by forcing the deflection in the harmonic model. The comparison
of the measured and simulated loops, see Fig. 3(a) and (b), show that the model is satisfactory.
This is better highlighted by comparing the time history of the measured and simulated restoring
forces for low deflection, Fig. 4(a), or high deflection, Fig. 4(b). The good agreement permits
an initial validation, confirmed in the following sub-section by the consideration on complex
stiffness.

3.3. Complex stiffness

Classically, harmonic investigation requires the use of dynamic equivalent stiffness ke

and loss factor Ze which are assumed to be constant during one cycle, see for example
Ref. [1]

ke ¼
Fmax � Fmin

wmax � wmin

; ð12Þ

Ze ¼
ðFmax � FminÞjw¼0

Fmax � Fmin

: ð13Þ

Relations (12) and (13) permit the formulation of the complex stiffness k:

k ¼ keð1þ jZeÞ; ð14Þ

with j ¼
ffiffiffiffiffiffiffi
�1

p
:

Applying formula (12) and (13) to the measured and simulated quasi-static loops presented in
Fig. 3 gives ke ¼ 26;135 N=m and Ze ¼ 0:039 for the measured loop and ke ¼ 26;750N=m and
Ze ¼ 0:038 for the simulated loop.
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Moreover, Figs. 5 and 6 show the dynamic equivalent stiffnesses and the loss factors
respectively, extracted from the simulated and measured loops presented in Fig. 3, by using
relations (12) and (13) respectively. The dynamic equivalent stiffness is maximum at low
amplitudes of deflection, damping decreases with large deflections.
The satisfactory agreement concerning both quasi-static and harmonic loops permit declaring

that the restoring force model proposed is reliable enough to be implemented in a flexible
structure subjected to a harmonic excitation. This is done in the next section.
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4. Harmonic response of a beam-isolator system

The harmonic response of a beam, see Fig. 7, equipped with the isolator described previously is
carried out numerically and experimentally.

4.1. Experimental set-up

The beam, made of steel, (cross-section area S; area moment of inertia I ; mass density
r ¼ 7800 kg/m3, Young’s modulus E ¼ 2� 1011 N/m2, length L ¼ 0:375m, thickness 0.004m and
width 0.040m), is clamped at one end and the dry-friction isolator is located at the abscissa
L1 ¼ 0:335m. The transverse harmonic excitation caused by a suspended electrodynamic shaker is
applied on a piezoelectric load sensor stuck at the abscissa L2 ¼ 0:165m. The lateral displacement
is measured using a proximity probe facing the abscissa 0.099m. The on-board masses of the
isolator and of the load sensor are respectively m1 ¼ 2� 10�3 and m2 ¼ 22:1� 10�3 kg. The
damping of the beam alone is evaluated by using measured modal factors. An experimental forced
response frequency of the cantilever beam with no isolator and subjected to a harmonic sine wave
excitation gives the first six modal viscous factors:

a ¼ ½ 0:0052 0:0005 0:0007 0:0004 0:0022 0:0040 	: ð15Þ

4.2. Modelling

The effect of the isolator is taken into account by using its restoring force and not by using its
complex stiffness. The beam is modelled using the Rayleigh–Ritz method. Functions of
displacement fiðxÞ are kinematically admissible, where x ¼ x=L is the non-dimensional variable of
space, and functions of time ziðtÞ permit the expansion of the lateral displacement wðx; tÞ which
has the following expression when repeated indices are used:

wðx; tÞ ¼ fiðxÞ ziðtÞ: ð16Þ

The displacement function chosen have a polynomial expression: fiðxÞ ¼ x1þi with i > 0:
Seeking the expressions of the kinetic and strain energies and of the virtual work of the applied
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forces and applying the Lagrange equations yield the system of differential equations:

Mij .z
j þ Kijz

j ¼ Fi ð17Þ

The mass and stiffness coefficients Mij and Kij are given by the following formulas:

Mij ¼
rSL

ði þ j þ 3Þ
þ m1x

ðiþjþ2Þ
1 þ m2x

ðiþjþ2Þ
2 ; ð18Þ

Kij ¼
EI

L3

ð1þ i þ j þ ijÞij
ð�1þ i þ jÞ

: ð19Þ

The applied force Fi

Fi ¼ �Rx1þi
1 þ F ðOÞx1þi

2 ð20Þ

contains the harmonic excitation force F ðOÞ

F ðOÞ ¼ F0 sinðOtÞ ð21Þ

and restoring force R of the isolator which is obtained by coupling the first order differential
Eq. (4), whose parameters are given by relations (9)–(11), with the second order Eq. (17).
The homogeneous system (17) permits formulating modal matrix u containing the mode fij of

the beam alone. The change of variable

z ¼ uq ð22Þ

introduced in the energies and virtual work yields the modal equations:

m.qþ c’qþ kq ¼ f; ð23Þ

where modal matrices m, c and k and modal vector f are formulated as follows:

m ¼ utMu; k ¼ utKu; f ¼ ujtF: ð24Þ

The coefficients of the diagonal damping modal matrix are formulated by using the measured
modal damping given by relation (15):

cii ¼ 2ai

ffiffiffiffiffiffiffiffiffiffiffi
miikii

p
: ð25Þ

In Ref. [12], it was demonstrated that the solution of the coupled Eqs. (4) and (17) exists and is
unique.

4.3. Results

The predicted harmonic response of the beam-isolator system obeys the experimental swept-
sine investigation. It is performed in the time domain: the step-by-step Runge-Kutta method is
used. The forcing frequency is incremented after steady-state behaviour is reached and the
amplitude of displacement recorded. For each forcing frequency O within the 0–250Hz range, the
initial conditions are:

zð0Þ ¼ 0; ’zð0Þ ¼ 0; Rð0Þ ¼ 0: ð26Þ

During the experimental swept-sine investigation, the amplitude of the harmonic force is
recorded. It is plotted in Fig. 8 and used as input data in the prediction. The predicted and
measured harmonic responses are presented in Fig. 9. Two resonance phenomena are highlighted.
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The fairly good agreement permits validating the model and in particular the hysteretic operator
used for modelling the isolator. The force-deflection loops of the isolator generated during the
simulation and plotted in Fig. 10 permit a possible dissipation evaluation.

5. Conclusions

A hysteresis operator was used to model the behaviour of an all-metal isolator. Its parameters
were identified using either quasi-static or harmonic experimental force-deflection loops. The
elasto-plastic behaviour of the dry-friction isolator makes it frequency independent. The complex
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stiffness extracted from the developed hysteretic model was compared to the experimental one. It
is concluded that the two approaches yield roughly the same complex stiffness. This step
constitutes a first validation of the hysteretic model.
Moreover the validation was confirmed by using an experimental investigation concerned with

the harmonic response of a beam equipped with the isolator. The hysteretic model was coupled to
the equation of the motion of the beam in bending.
Finally it was shown that the hysteretic operator is well adapted to the hysteretic behaviour of

an isolator defined by experimental force-deflection loops. Moreover its implementation in the
equation of motion of a system is done easily by using equations coupled by the restoring force.
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Appendix A. Nomenclature

a dissipation energy constant
a measured modal damping factor vector of the beam
l parameter defined within the [0, 1] interval
Ze loss factor
x non-dimensional variable
r mass density
O pulsation of the harmonic excitation force
m rotation constant of the loop
f displacement function
c modal damping matrix
E Young’s modulus
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f force excitation vector
F0 harmonic excitation force amplitude
Fi applied force
FM ; Fm maximum and minimum forces of the loop
h envelope curves
hl ; hu lower and upper envelope curves
I area moment of inertia
j complex number
k constant having the dimension of a stiffness
k modal stiffness matrix
ke dynamic equivalent stiffness
Kij stiffness matrix
L length of the beam
L1; L2 abscissa of the locations of the dry-friction isolator and of the excitation force
m modal mass matrix
m1; m2 masses of the isolator and of the load sensor, respectively
Mij mass matrix
p; q; input and output functions of the hysteretic operator
q modal co-ordinates
R restoring force
R0 reference force
S cross-section area
w deflection
wc maximum deflections of the experimental loops
wM ; wm maximum and minimum deflections of the loop
z function of time in the Ritz method
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